IRX1 hypomethylation promotes osteosarcoma metastasis via induction of CXCL14/NF-κB signaling.
نویسندگان
چکیده
Osteosarcoma is a common malignant bone tumor with a propensity to metastasize to the lungs. Epigenetic abnormalities have been demonstrated to underlie osteosarcoma development; however, the epigenetic mechanisms that are involved in metastasis are not yet clear. Here, we analyzed 2 syngeneic primary human osteosarcoma cell lines that exhibit disparate metastatic potential for differences in epigenetic modifications and expression. Using methylated DNA immunoprecipitation (MeDIP) and microarray expression analysis to screen for metastasis-associated genes, we identified Iroquois homeobox 1 (IRX1). In both human osteosarcoma cell lines and clinical osteosarcoma tissues, IRX1 overexpression was strongly associated with hypomethylation of its own promoter. Furthermore, experimental modulation of IRX1 in osteosarcoma cell lines profoundly altered metastatic activity, including migration, invasion, and resistance to anoikis in vitro, and influenced lung metastasis in murine models. These prometastatic effects of IRX1 were mediated by upregulation of CXCL14/NF-κB signaling. In serum from osteosarcoma patients, the presence of IRX1 hypomethylation in circulating tumor DNA reduced lung metastasis-free survival. Together, these results identify IRX1 as a prometastatic gene, implicate IRX1 hypomethylation as a potential molecular marker for lung metastasis, and suggest that epigenetic reversion of IRX1 activation may be beneficial for controlling osteosarcoma metastasis.
منابع مشابه
IRX1 hypomethylation in osteosarcoma metastasis
Osteosarcoma, the most common primary bone cancer in children and adolescents, is notorious for its potential to metastasize to lungs at the very early stage. Despite improvements in both chemotherapy and surgical managements in last two decades, the five-year survival rate remains at only 20% in metastatic patients. Thus, identifying biomarkers for early detection of metastasis and developing ...
متن کاملEFEMP1 promotes the migration and invasion of osteosarcoma via MMP-2 with induction by AEG-1 via NF-κB signaling pathway
The role of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) in osteosarcoma remains unknown. Then applying EFEMP1 siRNA, plasmids transfection and adding purified EFEMP1 protein in human osteosarcoma cell lines, and using immunohistochemistry on 113 osteosarcoma tissues, demonstrated that EFEMP1 was a poor prognostic indicator of osteosarcoma; EFEMP1 was ...
متن کاملCelastrol suppressed osteosarcoma U‐2OS cell metastasis via downregulation of the PI3K/Akt/NF-κB signaling pathway in vitro. Introduction Osteosarcoma is the most common primary malignant bone neoplasm in adolescents and young adults, and usually occurs in growing long bones
Osteosarcoma (OS) is a primary malignant tumor of the bone, with a tendency to metastasize early. Despite the advances in treatment options, more than 30% of patients develop distant metastases, and the prognosis of these patients with metastases is extremely poor. Celastrol has been demonstrated to manifest multiple pharmacological activities, including induction of apoptosis in numerous types...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملFractalkine/CX3CL1 induced intercellular adhesion molecule-1-dependent tumor metastasis through the CX3CR1/PI3K/Akt/NF-κB pathway in human osteosarcoma
Osteosarcoma is the most common primary bone tumor in children and teens. The exact molecular mechanism underlying osteosarcoma progression still remains unclear. The CX3CL1/fractalkine has been implicated in various tumors but not in osteosarcoma. This study is the first to show that fractalkine promotes osteosarcoma metastasis by promoting cell migration. Fractalkine expression was higher in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 125 5 شماره
صفحات -
تاریخ انتشار 2015